ORGANOMETALLIC STRUCTURES – TRANSITION METALS

141

ANNUAL SURVEY COVERING THE YEAR 1972 (PART 1)

M.I. BRUCE

Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain)

CONTENTS

Introduction	.142
Simple carbonyl derivatives	142
Compounds containing metal-metal bonds (a) Transition metal-Main Group metal bonds (b) Complexes containing only transition metals	143 143 144
Complexes containing metal-carbon o bonds	147
Olefin and acetylene complexes	150
Complexes formed by oxidative addition and related reactions	152
Allylic and related complexes	153
Diene complexes	155
Cyclopentadienyl and related complexes	157
Large ring hydrocarbon complexes	159
π -Bonded heterocyclic systems	159
Complexes containing donor atom ligands (a) Boron (b) Carbon (c) Nitrogen	160 160 160 162
(d) Phosphorus (e) Sulphur	166
Nitrosyl complexes	167
Ferrocene and benchrotene derivatives	168
References	169

ABBREVIATIONS

acac	acetylacetonate
asp	1-(dimethylarsino)-2-(diphenylphosphino)tetrafluorocyclobutene
bae	N,N'-ethylenebis(acetylacetoniminato)
bipy	2,2'-bipyridyl
CDT	1,5,9-cyclododecatriene
Су	cyclohexyl

1.2-bis(dimethylphosphino)ethane dmpe 1,2-bis(diphenylphosphino)ethane dppe dppm bis(dipenylphosphino)methane dq du:oquinone ffars 1,2-bis(dimethylarsino)tetrafluorocyclobutene ind indenvl 3.5-dimethylpyrazolyl-Me₂pz ox oxinate PCy₃ tricyclohexylphosphine 1,10-phenanthroline phen pyridine рy pyrazolyl DZ THF tetrahydrofuran

INTRODUCTION

During 1971, the number of molecular structures of interest to organo-transition metal chemists approached the 250 mark, and there is every likelihood that this figure will increase rapidly. In order to provide accounts that are both more manageable, and more timely, 1972 and later years will be covered by two surveys each year, appearing at approximately six-monthly intervals.

M.L. BRUCE

SIMPLE METAL CARBONYL DERIVATIVES

The anion in NEt₄ [WBr₃(CO)₄] (1) has $C_{3\nu}$ (capped octahedral) symmetry¹, and bond lengths are similar to those reported for WBr₂(CO)₃ [(Ph₂As)₂CH₂]₂ [AS71; p. 335]^{*}. In this complex, the CO groups are mutually *cis* and thus avoid competing for metal d_{π} electron density. The compound [WH(OH) (CO)₃]₄ ·4OPPh₂Et (2) contains a distorted W₄O₄ cube, with non-bonding W···W distances². The hydride ligands are probably located between two of the CO groups, making the tungsten seven-coordinate. The adduct phosphine oxide molecules are linked to the cube via O-H···O hydrogen bonds.

An independent determination³ of the structure of $[(\pi-C_5H_5)W(CO)_3AlMe_2]_2$ [see AS71; p. 304] confirms the presence of CO groups bridging the two metal atoms: W-C-O-Al.

AS71: M.I. Bruce, J. Organometal. Chem., 48 (1973) p. 303-349

142

An electron diffraction determination⁴ of the structure of $\text{Re}_2(\text{CO})_{10}$ reveals that the equatorial CO groups are in the eclipsed conformation.

The anions in $[Ni(ph:n)_3] [Mn(CO)_5]_2$ are trigonal bipyramidal, slightly distorted, especially in the equatorial plane, where C-Mn-C bond angles are 117.5(3) to 125.0(4)°. Although the difference in Mn-C_(axial) and Mn-C_(eq) bond lengths (~ 0.02 Å) is not significant, comparison with some other trigonal-bipyramidal complexes suggests a structural trend, for which an explanation is offered⁵. The iodocarbonyl anions in [MnI(OPPh₃)₄] [cis-MnI₂(CO)₄] are disordered⁶, as also found in other halo-carbonyls recently [AS71, p. 304; AS70, p. 54]^{*}.

COMPOUNDS CONTAINING METAL-METAL BONDS

(a) Transition metal-Main Group metal bonds

The electron diffraction structure of $Br_3GeMn(CO)_5$ (3) reveals distorted tetrahedral and octahedral coordination about the germanium and manganese atoms, respectively, with the equatorial CO groups being bent towards the Group IV element⁷. The Ge-Mn bond is shorter than that found in Ph₃GeMn(CO)₅, explained by the greater electronegativity of the substituent.

* AS70: M.I. Bruce, Organometal. Chem. Rev. B., 9 (1972) p. 53-98.

In the two modifications of $(\pi - C_5 H_5)$ $(\pi - C_4 H_6)$ FeGeCl₂Me (4), the metal-metal bonds are considerably shorter than the radius sum [2.28 vs. 2.56 Å], apparently as a result of significant $d_{\pi}(Fe) \rightarrow d_{\pi}(Ge)$ dative interaction⁸. The two hydrocarbon ligands are sterically hindered, and cause distortion of coordination about the two metal atoms.

Full details of the structure of $[(\pi-C_5H_5)Co(CO)]_2(GeCl_2)_2^{-i}e(CO)_4$ (5), containing a five-atom metallocycle, have appeared⁹. The Co-Ge-Fe-Ge-Co ring is planar, and little strain is present in the ring.

Also reported are details of the refinement of $[CCo_3(CO)_9]_2$, which consists of two tetrahedral CCo₃ units linked via the carbon atoms, in a configuration intermediate between eclipsed and staggered Co₃ atoms¹⁰. The formally single C--C bond length is 1.37(1) Å, indicating that the *p* character of the outwardly directed orbitals has been reduced. [See also AS71, p. 307; AS70, p. 61.] In the complex derived from MeCCo₃(CO)₉ and ffars, namely MeCCo₃(CO)₇(ffars) (6) three CO groups bridge the basal cobalt atoms; the arsenic ligand also bridges two of the metal atoms¹¹. Two of the CO bridges are highly asymmetric.

(b) Complexes containing only transition metals

The account¹² of the structure of α -H₂Ru₄(CO)₁₃ (7) complements that of the mixed hydride H₂ FeRu₃(CO)₁₃ [AS71; p. 306]. Two separate sets of Ru-Ru distances are found. The two bridging CO groups are bonded asymmetrically, while the hydrogen atoms (not located) are assumed to bridge the Ru¹-Ru³ and Ru¹-Ru⁴ bonds.

ORGANOMETALLIC STRUCTURES - TRANSITION METALS

The ruthenium carbonyl nitrosyl, $Ru_3(CO)_{10}(NO)_2$, has structure (8). The Ru-Ru bond spanned by the two NO groups is 3.15 Å, and suggests a low bond-order. However, structures of related complexes suggest that the separation of two metal atoms in a cluster depends largely on the nature of the groups bridging these atoms¹³.

145

The reaction between $O_{s_3}(CO)_{12}$ and triphenylphosphine affords ten products, including the kn_wn complexes $O_{s_3}(CO)_{12-n}(PPh_3)_n$ (n = 1-3). Six of the remaining complexes have been characterised by X-ray crystallographic methods, and several interesting structural features occur^{14,15}. In all cases, the phosphine ligand has undergone some reaction with the O_{s_3} cluster. The complexes are $O_{s_3}(CO)_8(PPh_2)$ (Ph) (PPhC₆H₄) (9), $O_{s_3}(CO)_7(PPh_2)_2(C_6H_4)$ (10), $HO_{s_3}(CO)_9(PPh_3)(PPh_2C_6H_4)$ (11), $HO_{s_3}(CO)_7(PPh_3)$ (PPh₂) (C_6H_4) (12), $HO_{s_3}(CO)_8(PPh_3)$ (PPh₂C₆H₄) (13), and $HO_{s_3}(CO)_7(PPh_2)$ (PPh₂C₆H₄C₆H₃) (14). Major features include diphenylphosphido ligands bridging two metal atoms, *ortho*-metallated diphenylphosphido groups bridging two or three metal atoms, a phenyl group bridging two metal atoms via one carbon, a C₆H₄ group interacting with all three osmium atoms, and in (14), a ligand formed by addition of C₆H₄ to the phosphine. The formation of these complexes is considered to arise via oxidative addition reactions which occur on the cluster.

Another example of an allyl group acting as a five-electron donor is found in the complex $HRu_3(CO)_9(C_6H_9)$ (15), obtained from 2,4-hexadiene and $Ru_3(CO)_{12}$ ¹⁶. The dimensions of the C_3Ru_3 set of atoms are very similar to those found in the complex $HRu_3(CO)_9(C_{12}H_{15})$

[AS71, p. 313; AS70, p. 63] and are consistent with the C₃ system π -bonding to one ruthenium, and σ -bonding to the other two metal atoms.

The reaction between $Os_3(CO)_{12}$ and tetraphenylbutadiene affords¹⁷ the complex $Os_3(CO)_8(C_4 Ph_4)$ (16), containing an Os_3 cluster bonded to the hydrocarbon via interaction of the diene system with two metal atoms, and of one of the phenyl groups to the third osmium. Reaction between $Ph_2PC \equiv CCF_3$ and $Fe_3(CO)_{12}$ affords complex (17), in which formation of a ferrole ring has occurred ¹⁸. In addition, cleavage of a C-P bond to give a bridging PPh₂ group is found in a similar way to (ffars)Fe_3(CO)₉ [AS71: p. 337].

The first tetranuclear cyclopentadienylmetal complex, $[(\pi-C_5H_5)Fe(CO)]_4$ (18), is another example of a molecule with a cubane-like $M_4 \times_4$ structure, with X being a symmetrically triply-bridging carbonyl group ¹⁹. Although the four iron atoms form a bonded tetrahedron (Fe-Fe, 2.520 Å), this interlocks with the carbonyl group tetrahedron to give a distorted cube (Fe-C, 1.986 Å). The structure of the related paramagnetic monocation in $[(\pi-C_5H_5)_4Fe_4(CO)_4]PF_6$ reveals only a slight change in the Fe₄(CO)₄ nucleus (from cubic T_d in the neutral molecule toward distorted tetragonal D_{2d} in the cation). At the same time, the Fe-Fe bonds are shortened (to 2.484 Å). These and other bond length changes are rationalised on the basis of an MO correlation diagram, and suggest that oxidation involves removal of an electron from an MO which is somewhat antibonding between the iron atoms, and also antibonding between the carbon and oxygen atoms²⁰. The Fe-W bond length (2.81 Å) in $(\pi-C_5H_5)$ (CH=CHCOPh)FeW(CO)₆ (19) has been

reported²¹.

146

The mixed iron-platinum cluster complex Fe₂Pt(CO)₉(PPh₃) (20) contains a PtFe₂ cluster with no bridging carbonyl grcups²²; the related compound FePt₂(CO)₅ [P(OPh)₃]₃ (21) has also been studied²³. In both cases, displacement of PPh₃ by CO has occurred on platinum. The stereochemistry of (20) suggests a simple bonding description involving a [Pt(CO) (PPh₃)]²⁺ cation and two [Fe(CO)₄]⁻ moieties, although it is likely that an MO description may be preferable. Qualitative MO calculations support the idea of some multiple bond character in the metal-metal bonds, which are shorter than expected.

147

COMPLEXES CONTAINING METAL-CARBON σ BONDS

Crystal data for the complex chromium aryl Na₂CrPh₅ · 3Et₂O · THF have been reported ²⁴. The complex $(\pi$ -C₅H₅)₂ Mo(NO)Me (22) contains a linear Mo–NO group, and asymmetric C₅H₅ groups containing two short, one intermediate, and two long Mo–C bond distances²⁵, which are analogous to those found in (C₅H₅)₃ Mo(NO) [AS69; 970]. The Mo–CH₃ bond length (2.20 Å) is markedly shorter than other reported examples. The crystal contains two independent discrete molecules which are approximate mirror-images of each other.

In the unit cell of MnMe(CO)₄ (PPh₃) (23), there are two molecules, one of which exhibits disorder with spatial occupation of two sites by both methyl and carbonyl groups, one *cis* and one *trans* to the PPh₃ligand²⁶. The second molecule exhibits no disorder, being the *cis* isomer. Full details of the structure of Mn(CO)₄ (C₂ PPh₃)Br (24) have been published²⁷. This complex, obtained from a reaction between Mn(CO)₅ Br and Ph₃P=C=PPh₃, is considered to contain the prominant resonance form Ph₃P⁺-C= \overline{C} -Mn(CO)₄ Br. The ligand is essentially a tetraorganophosphonium molecule, with one of the organic groups being the acetylide anion.

In the system

148

$$M(C_{10}H_8) (dmpe)_2 \Rightarrow MH(C_{10}H_7) (dmpe)_2$$
 (M = Ru, Os)

which behaves chemically as the Ru^0 complex, IR and NMP data suggest that the solid is the naphthyl hydride. This has been confirmed²⁸ by a crystal structure, which reveals the molecular configuration (25). The hydride is assumed to be *trans* to one of the phosphorus atoms in the vacant site. The major structural difference between the ruthenium and osmium: complexes is in the fractional occupancy of sites for the bridging carbon atoms in the chelate rings.

M.I. BRUCE

Some preliminary data for the alkylcobalt complex MeCo(bae)(py) (26) have been given ²⁹. The Co--CH₃ bond length [1.99(1) Å] is similar to those found in related Schiff-base derivatives. Comparison with the five-coordinate complex MeCo(bae) shows that distortions in the macrocyclic ligand reflect interactions with the axial ligands. In (26) the metal atom remains in the coordination plane, whereas in MeCo(bae), the cobalt atom lies 0.12 Å out of the plane.

The complex *trans*-Ni(C₆F₅)₂(PMePh₂)₂ has structure (27)³⁰. Comparison with *trans*-Ni(C₆F₅) (C₆Cl₅) (PMePh₂)₂ shows that in the latter, the Ni-C₆F₅ bond is longer by 0.039 Å, the Ni-P bond lengths increase by 0.024 Å, and the C-C-C angle at the nickelbonded carbon decreases by 2.0°. The first two results suggest that σ -C₆Cl₅ is a better σ donor than is σ -C₆F₅. Structural and spectroscopic data ³¹ for *trans*-[PtCl(CH₂SiMe₃) (PMe₂Ph)₂] (28) lead to the conclusions that the *trans*-influence of YCH₂ is large compared with Cl, but smaller than Ph₂MeSi, and is not appreciably changed as Y changes in the series Y = H, Ph or SiMe₃. Dissolution of PtIMe(PPh₃)₂ in liquid SO₂, and removal of excess solvent, gives the adduct PtIMe(PPh₃)₂SO₂ (29), in which the SO₂ is attached to the iodine atom [I-S, 3.391(3) Å] ³².

Aryl groups bridging two copper atoms are unusual features of the structure of $[Cu(Me_2NCH_2C_6H_3Me_p)]_4$ (30)³³. Although the Cu–Cu bond distance is only 2.377 Å, bonding is considered to involve only the s and p valence orbitals. The four copper atoms form a distorted "butterfly" arrangement. In the related complex

 $[Cu(2-Me_2NC_6H_4)]_4(CuBr)_2$ (31), the six copper atoms form a distorted octahedron, with bridging bromines and 2-(dimethylamino)phenyl ligands³⁴. Bonds from the copper atoms to the latter groups are asymmetric [2.08 and 1.97 Å].

The complex anion in AsPh₄ [Au(CN₄R)₄] (R = i-Pr) (32), a complex obtained from AsPh₄ [Au(N₃)₄] and isopropylisonitrile, contains square-planar gold(III) σ -bonded to four tetrazolyl rings³⁵. The latter form two *trans* coplanar pairs arranged so that the ring planes are mutually perpendicular.

The reaction between $(\pi \cdot C_5 H_5)_2$ TiPh₂ and CO₂ affords complex (33), in which CO₂ has formed an *ortho*-carboxylato group, with an intramolecular Ti–O bond, and formation of a five-membered metallocycle³⁶. The second phenyl group is eliminated, presumably as benzene, together with the *ortho*-hydrogen atom.

One of the complexes obtained from IrCl(CO) (PPh₃)₂ and p-FC₆H₄N₂⁺BF₄⁻ is the metallated derivative (34), in which the *ortho*-hydrogen has migrated to the coordinated nitrogen atom. Deprotonation occurs on treatment with base³⁷.

Intramolecular metallations of olefins coordinated to platinum are substantiated in the cases of $PtCl(C_8H_{12}OMe)$ (py) (35), and of one diastereoisomer of $PtCl(C_6H_{10}O \cdot OMe)$ (amine) (36). In the former, obtained by a halogen bridge-splitting reaction, the pyridine is coordinated *trans* to the Pt-C σ bond³⁸. In (36), obtained by a similar route from a diallylether complex, the absolute configurations of the asymmetric carbon atoms are indicated³⁹

OLEFIN AND ACETYLENE COMPLEXES

150

Comparison of the ethylene and tetrafluoroethylene molecules bonded to a transition metal has been made in $(\pi \cdot C_5 H_5)Rh(C_2 H_4) (C_2 F_4) (37)^{40}$. The respective Rh-C and olefinic C--C bond distances for $C_2 H_4$ and $C_2 F_4$ are: 2.167(2), 1.358(9) and 2.024(2), 1.405(7) Å. The significant differences in metal-olefin bonding between the two ligands suggested by NMR work is borne out by the structural results. The Rh--C₂H₄ bond can be discussed in terms of the usual Dewar-Chatt-Duncanson $(\sigma - \pi)$ approach, but the geometry of the Rh--C₂F₄ unit suggests a situation where there is a more or less pure π bond (or a

ORGANOMETALLIC STRUCTURES – TRANSITION METALS

metallocyclopropane, in valence terms). Brief details have been given of the structure of the cation in $[Rh(C_2H_1)_3(MeCN)_2]BF_4$ (38); the three ethylene ligands are coplanar, and occupy the equatorial positions of a trigonal bipyramidal complex⁴¹.

The diethylene-nickel complex Ni(PCy₃)(C_2H_4)₂ has structure (39), in which the metal has a distorted trigonal coordination, with an overall planar configuration of the bisolefin-heavy atom framework⁴². A refinement⁴³ of Ni(C_2H_4)(PPh₃)₂ confirms the identity of the complex with that used by Dreissig and Dietrich⁴⁴ in their determination. Nearly twice as many intensity measurements result in a reduction in e.s.d. by a factor of three. The C_2H_4 double-bonc length is 1.43(1) Å, and the bond is twisted out of the NiP₂ plane by 5.0°. The related complex Pt(PPh₃)₂(C_2H_4) has a coplanar PtP₂C₂ arrangement, and the lengthening of the olefinic bonds in these complexes is similar to that found for other elements⁴⁵.

The structure of the Zeise's salt analogue PPh₄ [PtCl₃(C₄H₈O₂)] (C₄H₈O₂ = cis-2-buten-1,4-diol) has been reported⁴⁶. The anions contain essentially square-planar platinum; the coordinated double bond has lengthened to 1.40(4) Å. In the crystal, dimerisation occurs by hydrogen bonding between two anions (40).

The differences found in silver-olefin and silver-aromatic coordination have been further discussed⁴⁷ with reference to the structure of the indene–AgClO₄ adduct (41). The dimeric units consist of two indene molecules linked by two silver atoms. One is coordinated only to olefinic double bonds, and the second to two aromatic rings and a perchlorate group. This metal atom has trigonal-planar coordination and is the first example of its type. For the adducts of AgClO₄ with acenaphthene (42) and acenaphthylene (43), the former consists of one-dimensional infinite chains of AgClO₄ with aromatic groups lying on either side⁴⁸. Complex (43) consists of chains of alternating aromatic and perchlorate groups.

The structure of W(CO) $(C_2 Ph_2)_3$ (44) has been determined ⁴⁹, some eight years after the initial report of these interesting complexes. Three crystalline forms were characterised, all having similar molecular structures. Of essentially C_{3v} symmetry, the molecule contains three acetylene moieties tilted away from the W-C-O group by about 13.4°.

COMPLEXES FORMED BY OXIDATIVE ADDITION AND RELATED REACTIONS

A dioxygen adduct of a cobalt phosphine complex, $[Co(cis-Ph_2 PCH=CHPPh_2)_2(O_2)]BF_4$, has structure (45)⁵⁰. The O₂ ligand occupies an equatorial site, and the gross structural features are similar to those found in $[M(dppe)_2(O_2)]^+(M = Rh, Ir)$ [AS71; p. 322]. The disulphur analogue of the latter iridium complex, $[Ir(dppe)_2(S_2)]Cl$ (46) is nearly isostructural with the dioxygen complex⁵¹. The S-S bond [2.066(6) Å] is comparable with that in S₈ [2.060(3) Å], but significantly longer than the bond in free S₂ [1.889 Å].

The complex Ni(CN-t-Bu)₂(C_2 Ph₂) has structure (47), with a small dihedral of about 2.6(7)° between the Ni-C-C (acetylene) and Ni-C-C (isocyanide) planes⁵². The C=C triple bond length [1.284(16) Å] is intermediate between normal C=C and C=C bonds; the phenyl groups are bent back by some 31°. Full details of the azobenzene complex Ni(CN-t-Bu)₂(N₂ Ph₂) are now available; the dihedral between the Ni-N-N and Ni-C-C planes is only 1.2(3)°, and the N-N bond distance [1.385(5) Å] is close to that of an N-N single bond ⁵³.

152

ORGANOMETALLIC STRUCTURES - TRANSITION METALS

The reaction between Ir(NO) (PPh₃)₃ and hexafluoro-2-butyne affords the unusual binuclear complex (48), in which the six-membered metallocycle has the boat conformation ⁵⁴. Addition of diphenylcyclopropenone to $Pt(PPh_3)_4$ affords the four-membered metallocycle (49), containing a platinacyclobutenone ring, a reaction which must involve C–C bond cleavage ⁵⁵.

ALLYLIC AND RELATED COMPLEXES

The cation in $[Mo(CO)_2(\pi-C_3H_5)(py) (bipy)]BF_4$ has structure (50), with approximate octahedral coordination about the molybdenum⁵⁶. The compound is related to $Mo(CO)_2(\pi-C_3H_5)$ (NCS) (bipy) and $Mo(CO)_2(\pi-C_4H_7)$ (NCS) (phen), reported earlier [AS69, p. 964; AS70, p. 72].

The complex obtained from isoprene and RuCl₃ has structure (51), in which a linear tail-to-tail dimer of isoprene is coordinated to the metal atom via two allyl groups⁵⁷. A similar coordination has also been reported for the analogous complex containing a butadiene trimer⁵⁸. The Ru₂Cl₂ ring deviates appreciably from a perfect square, with the Ru–Cl bond opposite the π -allyl group being longer than that opposite to chlorine by some 0.09 Å.

The complex $(\pi - C_5 H_5)NiC_3H_4 \cdot C_3H_4Ni(\pi - C_5H_5)$ (52) shows⁵⁹ some bond localisation in the C₅ rings, with "allyl" C–C bonds of 1.398, 1.394 Å separated by two "long" C–C bonds (1.438, 1.423 Å) from a "short" C–C bond of 1.401 Å. Extended Hückel MO calculations accord with this result. A *cis*-bis(π -allyl)nickel system is found⁶⁰ in the complex of nickel with tricyclohexylphosphine and allene trimer (53). The allylic C–C bonds are asymmetric, and suggest a formulation of the ligand as (53a).

A new phosphine derivative of $[(\pi - C_3H_5)PdI]_2$ has been obtained by treatment of the bridged iodide with excess PPh₃ in benzene⁶¹. The benzene solvate has structure (54), where two Pd(PPh₃) moieties are linked by bridging halide, to give a Pd₂I triangle. The allyl group is parallel to the metal-metal bond, and randomly occupies two sites. Differences in C-C bond length in the C₃ group indicate different degrees of double bond character, while the Pd-C (terminal) bond distances suggest a certain degree of σ bond character.

The structure deduced for the palladium complex (55) by NMR methods has been confirmed by a single crystal X-ray study ⁶². Full details of the structure determinations of $[Pt(C_3H_5)(acac)]_2$ (56) and $[Pt(C_3H_5)Cl]_4$ (57), in which the allyl groups act as σ,π -bridging ligands, are now available ⁶³.

ORGANOMETALLIC STRUCTURES - TRANSITION METALS

DIENE COMPLEXES

The structures of the complexes $(\pi - C_5 H_5)Rh(\pi$ -diene) (58) (diene = 2,3-dichlorobutadiene, 2,3-dimethylbutadiene) have been reported briefly⁶⁴. While the diene systems show no unusual features, there is some evidence for localisation of bonding within the π -C₅H₅ ring, differences in Rh–C distances being matched by differences in the corresponding interring C–C bond lengths.

The complex Fe(CO) $(C_4H_6)(C_8H_8)$ (59) contains two diene units bonded to iron; the four terminal carbon atoms of these units form the base of a square pyramid, the apex being the carbonyl carbon atom⁶⁵. The bonding of both units appears to be closer to the 2π than the π , 2σ extreme. The structures of both the symmetrical⁶⁶ and unsymmetrical isomers⁶⁷ of the oxapropellatetraene-Fe₂(CO)₆ complex have been described. In the former (60), m.p. 200-204°, each iron atom is complexed to a 1,3-diene system, with the central C-C bonds shorter than the outer ones. In the unsymmetrical isomer (61), m.p. 135-138°, the ligand oxygen interacts with one of the diene systems, and consequences of this interaction are considered. In (60), the oxygen atom has a large thermal vibration component, which may be explained by flipping of the atom to each side in the crystal, or by a statistical distribution of isomers in which the oxygen atom is bent to one or other side. A trinuclear complex of a cyclooctatetraene dimer, $C_{16}H_{16}Fe_3(CO)_9$, has structure (62)⁶⁸. Apart from the normal 1,3-diene-Fe(CO)₃ unit, the other two iron atoms interact simultaneously with a vinyl radical and the allyl group in a bicyclo[3.2.1] octane moiety. The vinyl-Fe₂ interaction is a new reature in organoiron complexes.

Spectroscopic and X-ray structural evidence has now established that α_{β} -unsaturated ketones complex to Fe(CO)₃ groups using only the π -systems. Pinocarvona—Fe(CO)₃ has structure (63). The results are discussed on the basis of MO calculations, which are extended to the α_{β} -diketones⁶⁹.

An increasing number of complexes of the larger hydrocarbons are now being described, and a feature of their structures is the combination of well-established bonding modes, for example a π -allyl group and carbon-metal σ bond. The nomenclature of these complexes has been rendered easier by using the *hapto* system introduced by Cotton⁷⁰ some years ago. In the following section several complexes are mentioned which cannot be otherwise conveniently classified.

156

Three isomers of iron carbonyl derivatives of allene trimer, $(C_9 H_{12})Fe_2(CO)_6$ have been isolated, and the structures of two of these have been reported ⁷¹. In (64), the C₉ hydrocarbon is attached via a 1,3-diene system to one Fe(CO)₃ group, while the second Fe(CO)₃ group is bonded to a π -allyl moiety and C(5). The other isomer (65) also contains a 1,3-diene-Fe(CO)₃ group, but the second iron atom is attached to a trimethylenemethane portion of the ligand.

ORGANOMETALLIC STRUCTURES – TRANSITION METALS

Hydride abstraction from $(C_8H_{12})Ru(CO)_3$, followed by addition of cyanide ion, affords the cyanocyclooctadienyl complex (66), in which the C_8 ring is attached to the $Ru(CO)_3$ group via a π -allyl group and a metal-carbon σ bond⁷². This type of attachment is described as a 1,2,3,6-*tetrahapto* system, and was first suggested by the author⁷³ for an isomer of $(C_8H_8)Os(CO)_3$ on the basis of NMR data.

Isoprene reacts with Ni(CDT) (PCy₃) to give the complex (67), containing an isoprene dimer attached to nickel again via a π -allyl system and a metal—carbon σ bond⁷⁴. The 2,6-arrangement of methyl groups suggests that the two isoprene units are not symmetrically bonded to the metal atom before coupling.

An unusual tetrameric rhodium complex is obtained from hexafluoro-2-butyne and $[Rh(C_7H_8)Cl]_2$, and has structure (68)⁷⁵. In this, the acetylene and diene have undergone a homo Diels—Alder addition; the resulting ligand is attached to rhodium via the double bond and two Rh–C σ bonds.

The insertion product from an intermediate "*p*-tolyl-palladium chloride" and 2-butyne, derivatised with acetylacetonate, has structure (69)⁷⁶. The molecule unusually contains a cyclopentadiene coordinated to the metal by only one double bond, and a Pd-C σ bond to a CH(*p*-tol)CH₂ group attached to the C₅ ring.

CYCLOPE: TADIENYL AND RELATED COMPLEXES

The first structural study of an organoscandium complex is provided by $[(\pi - C_5 H_5)_2 \text{ ScCl}]_2$ (70), which is a chloro-bridged dimer, containing symmetrically-bonded (*pentahapto*) C₅ rings⁷⁷. In the crystal, Hf(C₅H₅)₄ (71) has two *pentahapto*-C₅H₅ groups, and two *mono-hapto* groups⁷⁸, and is thus similar to the titanium complex, but differs from the zirconium analogue.

The complex originally formulated as $Mol(CO)_2$ (ind) has now been shown⁷⁹ to be the tricarbonyl complex (72). Structurally, it is similar to the corresponding C₅H₅ compounds. The structure of (Me₃Si- π -C₅H₄)Re(CO)₃ (73) has also been reported⁸⁰, but gives no further information concerning the unusual solution ¹H NMR spectrum.

Reactions between ruthenocene and mercury(II) halides have given two compounds, $[(\pi-C_5H_5)_2Ru]_2 \cdot 3HgCl_2$ (74) and $(\pi-C_5H_5)_2Ru \cdot HgBr_2$ (75)⁸¹. In the former, Ru-Hg bonds are present; in addition, molecules of HgCl₂ are bonded via bridging chlorines, as shown. In (75), metal-metal bonds are also present, the adduct being a bromide-bridged

dimer. A similar compound has been described during electrochemical studies of the ruthenocene-ruthenicinium system⁸². Following the successful syntheses of perchloroferrocene and related molecules, the structures of decachlororuthenocene (76) is of interest⁸³. The molecule has nearly perfect D_{5h} symmetry, with eclipsed rings, and the chlorine atoms are displaced outward from the planar C₅ ring by about 0.1 Å. This apparently results from directed valence forces. The metal-ring distance (2.170 Å) is shorter than that found in ruthenocene (2.21 Å).

M.I. BRUCE

Further results of studies of quinone π -complexes of the Co–Rh–Ir triad include details of the structures of $(\pi$ -ind)Rh(dq) (77)⁸⁴ and of $(\pi$ -C₅H₅)Ir(dq) (78)⁸⁵. In the former, a pronounced distortion of the duroquinone ligand to the boat form occurs, with a dihedral angle of 25°. The iridium complex is similar to the rhodium analogue [AS70; p.70], with a dihedral angle of 26° for the complexed quinone molecule.

LARGE RING HYDROCARBON COMPLEXES

Several complexes with the cyclooctatetraene dianion are now known, and details of the structures of three of these have been described. Cerium forms a dimeric chloro-bridged complex, $[Ce(C_8H_8)Cl(THF)_2]_2$, which has structure (79)⁸⁶. The thorium and uranium complexes, $M(C_8H_8)_2$ (M = Th, U) both have D_{8h} symmetry, with symmetrically bonded C_8 rings⁸⁷. In all cases, the hydrocarbon ligand is considered to be the 10π cyclooctatetraene dianion.

159

π -BONDED HETEROCYCLIC SYSTEMS

The structure of a derivative of the hydridoborinate anion, $Co(C_5H_5BOMe)_2$ (80), confirms the presence of almost planar C_5B rings attached to the metal, with the boron atom involved in bonding⁸⁸. The *N*-methylpytrole π -complex (81) resembles other arene-Cr(CO)₃ derivatives⁸⁹. The ring is planar, although the methyl group is bent away from the metal by 8-9°. In the chromium complex of 2,4,6-triphenylphosphorin (82), the metal is bonded to the central C_5P ring, and bond distances suggest the ligand behaves as an aromatic system⁹⁰.

COMPLEXES CONTAINING DONOR ATOM LIGANDS

(a) Boron

The anion in NEt₄ [Co($B_7C_2H_9$)₂] has structure (83), with bicapped square anti-prismatic geometry⁹¹. Half the carbon atoms are disordered as shown, and no conclusions can be drawn concerning the existence of optical isomers in the cr₂ stal.

M I BRUCE

(b) Carbon

The cation in $[Mo(CN-t-Bu)_6 I] I$ (84) has monocapped trigonal prismatic geometry, with an iodine atom above one of the square faces⁹². This paper also includes a discussion of the distribution of seven-coordinate structures among the three polyhedra found for this group of complexes.

Full details of the structures of cis-[PtCl₂(CNEt) (PEt₂Ph)] ⁹³ and of cis-[PtCl₂(CNPh)₂] ⁹⁴ have now been published [see AS71; p. 325], and a brief report ⁹⁵ of the structure deter-

ORGANOMETALLIC STRUCTURES – TRANSITION METALS

mination of trans- $[PdI_2(CN-t-Bu)_2]$ has appeared. Bond length data on the platinum complexes suggest the trans-influence of isocyanide is appreciably smaller than that of tert-phosphine, and that there is appreciable metal-isocyanide back bonding.

Recent studies of carbene complexes have included: $Cr(CO)_5 C(OEt)NMe_2$ (85), with a higher π character for the C—N bond than for the C—O bond⁹⁶; $Cr(CO)_5 C(SPh)Me$ (86), the first complex of this type with sulphur as the heteroatom⁹⁷; and the manganese complex $Mn_2(CO)_9 C(OMe)Ph$ (87)⁹⁸. In the latter, one of the equatorial carbonyl groups in $Mn_2(CO)_{10}$ is replaced by the carbene ligand. In all complexes, there is some shortening of the axial M—CO bond (referred to the equatorial carbonyl).

The anion in NMe₄ [$(\pi$ -C₅H₅)Mn(CO)₂COPh] (88), an intermediate in the formation of carbene complexes, contains a carbene bonded to manganese (1.96 Å)⁹⁹. Slight shortening of the Mn–C bond, and lengthening of the C–O bond, are found. Treatment of Fe(CO)₅ with C₆H₃(OMe)₂ Li, followed by Et₃O⁺BF₄, gave a small amount of complex (89), shown to consist of a carbene–Fe(CO)₄ moiety linked to an Fe(CO)₃ group by the metal–carbene system¹⁰⁰. This is the first occasion on which the four-electron three-centre π -system associated with a metal–carbene ligand has been found to act as a π -ligand.

(88)

The chelate carbone complex (90) is obtained from ethyl diazoacetate and $[(\pi-C_5H_5)Mo(CO)_3]^-$, followed by methylation, protonation, and isolation of the hexa-fluorophosphate¹⁰¹. The carbone ligand forms a planar MoC₂N₂ ring, which can be represented as a non-classical ion, analogous to that formed by a sydnone.

(c) Nitrogen

The structures of two complexes containing $Fe(CO)_3$ or $Fe(CO)_2(PPh_3)$ groups linked by an N-N bridge have been determined. In the derivative obtained from 2,3-diazabicyclo-[2.2.1] heptane (91), the N-N bond length [1.404(9) Å] is close to an N-N single bond¹⁰². In the 3,6-diphenylpyridazine complex (92), the N-N bond length is 1.43 Å. In both molecules, an Fe-Fe bond is present, and contributes to the Fe₂N₂ framework¹⁰³.

Complexes of 8-hydroxyquinoline (oxH) with rhodium carbonyl moieties have been investigated 104 . In Rh(ox) (CO)₂, metal-metal bonds occur in the crystal, but substitution of the CO *trans* to nitrogen, giving Rh(ox)(CO)(PPh₃) (93), results in an Rh-Rh separation of 6.68 Å. A full set of data was not obtained for the dicarbonyl, the final R value being 0.24. The nickel carbonyl derivative of diacetylbis(dimethylhydrazone) (94) has distorted tetrahedral coordination about the metal, the ligand forming an almost planar five-membered chelate ring¹⁰⁵.

The reaction between $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and *meso*-tetraphenylporphine has been found to give the dicarbonyl (95)¹⁰⁶, rather than the ethanol adduct of a monocarbonyl¹⁰⁷. The complex is centrosymmetric, with two mutually *trans* CO groups, and is of interest because of the ease of displacement of one of these groups by other ligands. Unusually for metal carbonyl derivatives, this complex has highly non-linear CO groups [angle Ru-C-O, 153.3(9)°].

There has been much interest in structures of molybdenum complexes of the poly(pyrazolyl)borate ligands, some of which exhibit fluxional behaviour. In $Mo(CO)_2(C_5H_5)[B(pz)_4]$

ORGANOMETALLIC STRUCTURES – TRANSITION METALS

(96), the tetrakis(pyrazolyl)borate ligand is bidentate¹⁰⁸. The six-membered chelate ring, which in the crystal has a somewhat flattened boat conformation, can exist in two conformations in solution, giving rise to a temperature-variable proton NMR spectrum. In the analogous complex Mo(CO)₂ (C_7H_7)[H₂B(3,5-Me₂pz)₂] (97), which contains a *trihapto* C_7 ring, the boron ligand is bidentate as expected¹⁰⁹. However, the chelate ring is severely bent, as a result of the formation of a two-electron, three-centre B-H-Mo bond. The coordination about molybdenum in the related complex [H₂B(Me₂pz)₂] Mo(CO)₂(C_3H_5) (98) is distorted octahedral, the sixth position being occupied by a B-H hydrogen atom, and a possible interaction between these two atoms has also been suggested, allowing the 18-electron configuration to be achieved¹¹⁰. The complex [HB(pz)₃] Mo(CO)₂ N₂Ph (99) has the expected structure, with a short Mo-N (diazo) bond explained in terms of a contribution from Mo=N=N-(ph; the tris(pyrazolyl)borate ligand has C_{3v} symmetry¹¹¹.

163

(d) Phosphorus

The effect of a Group V donor ligand on the Cr–CO bond lengths in Cr(CO)₄ (dppe) (100) has been studied¹¹². The Cr–CO bonds *trans* to Cr–P bonds [1.831(7) Å] are shorter than those *trans* to Cr–CO [1.884(7) Å], and these data support conventional ideas concerning the relative π -accepting abilities of arylphosphine and carbonyl ligands. An account of the structure of *trans*-Cr(CO)₄ [P(OPh)₃]₂ shows that the complex has the expected distorted octahedral structure (101)¹¹³. Molybdenum carbonyl halides react with Group V donor ligands to give seven-coordinate complexes. The complex MoCl₂(CO)₂ (PMe₂Ph)₃

(102) has one unusually long Mo–P bond, and it is suggested that solvated methanol forms a bifurcated hydrogen bond to the two chlorine atoms¹¹⁴. In MoBr₂(CO)₂ [(Ph₂As)₂CH₂]₂ (103), one of the diarsine ligands is monodentate while the second is bidentate¹¹⁵.

In $(CO)_5$ CrAsMe₂ Mn $(CO)_5$ (104)¹¹⁶, the two metal atoms are crystallographically practically indistinguishable, bonds to arsenic being nearly equal, and other molecular parameters similar to those of $[(CO)_5$ CrICr $(CO)_5$]⁻. Complex (104) thus can be considered a member of the pseudosymmetric class of molecules.

The mixed tert-phosphine-arsine $Ph_2 PCF=CF(AsMe_2)CF_2CF_2(asp)$ behaves as a monodentate ligand in (asp)Fe(CO)₄ (105), being bonded to iron via phosphorus in an axial position ¹¹⁷. The structure of *cis*-H₂ Fe[PhP(OEt)₂]₄ (106) has been reported ¹¹⁸, in which the FeP₄ geometry is intermediate between tetrahedral and octahedral (including the two hydride ligands). The latter were located, giving Fe-H distances of 1.51(4) Å.

ORGANOMETALLIC STRUCTURES - TRANSITION METALS

The structures of $Co(CO)_2(NO)(PPh_3)$ and $Co(CO)(NO)(PPh_3)_2$ have been compared ¹¹⁹ and a second, independent determination on the former complex has appeared ¹²⁰. The CO and NO groups are disordered, and the most significant difference between the two compounds is found in the (C/N)-Co-(C/N) angles, which are 113.4° and 120.0°, respectively, and is explained in terms of different π electron repulsions. Solvated dimeric complexes of stoichiometry $[Rh(CO)(PPh_3)_2(S)]$ have been shown¹²¹ to be the five-coordinate dimers (107), in which the solvent does not interact with the metal. The metal-metal bond length is 2.630(2) Å.

An electron-diffraction study of Rh(NO) (PF₃)₃ (108) reveals a linear Rh–N–O system ¹²². The Rh–P bond lengths [2.245(5) Å] are compared with those found in twelve other rhodium–phosphine complexes, and correlations between bond length and the nature of the substituent on phosphorus are noted.

The complex derived from ferrocene-1,1'-bis(dimethylarsine) (fdma) and nickel carbonyl, followed by addition of iodine, has the structure (109)¹²³. This five-coordinate complex has nearly regular trigonal bipyramidal stereochemistry. The unusual bidentate ligand coordinates in a stepped configuration, with eclipsed cyclopentadienyl rings. The fluxional NMR behaviour may be explained by a flipping of the Ni(CO)₂ I₂ moiety from one side of the FeAs₂ plane to the other. The low-valent nickel complex Ni[CH₂(PCy₂)₂]₂ (110) contains a heterocyclic four-membered spirane ring system, in which the nickel has a distorted tetrahedral coordination¹²⁴. The P-Ni-P angles (77°) indicate that orbital overlap occurs via bent Ni-P bonds.

The structure of $Pt(CO)_2(PEtPh_2)_2$ (111) has been reported; some disorder was found in the Pt-CO interactions¹²⁵.

(e) Sulphur

The S₂C₆H₄ plane in $(\pi$ -C₅H₅)₂TiS₂C₆H₄ (112) is folded out of the TiS₂ plane by some 46°¹²⁶; this value is similar to those reported earlier in related complexes. Full details of the structure of $(\pi$ -C₅H₅)₂Mo(S-n-Bu)₂FeCl₂ are available¹²⁷ [AS71, p. 339]. This complex serves as a model compound for the nitrogenase system. There is no evidence for any metal-metal bond, and indeed the acute S-Mo-S (72.6°) and S-Fe-S angles (75.4°) suggest that metal-metal repulsion occurs. The iridium-dithiolene complex Ir₂(tdt)₃(CO)₂(PPh₃)₂ (113) (tdt = toluene-3,4-dithiolate) consists of iridium atoms linked by bridging sulphurs which are part of ligands chelating to one iridium only¹²⁸. No metalmetal interaction occurs.

M.I. BRUCE

Addition of CS₂ to *cis*-MnH(CO)₃(dppm) [dppm = CH₂(PPh₂)₂] results in hydrometallation of a C=S bond followed by internal attack on the thiocarbonyl sulphur atom after fission of an Mn-P bond¹²⁹. The resulting complex has structure (114). The valence-bond structure (114a) can be written, although the metal carbonyl groups will prevent any significant charge remaining on the metal. Insertion of CS₂ into the Pt-F bond in [PtF(PPh₃)₃]HF₂ affords the cationic dithiofluoroformate complex (115) ^{r30}. The dithiocumate complex (116) is of some interest because of the metal-metal bond [2.870(3) Å], supported by two bridging ligands^{230a}.

Cyclopentamethylenethiuram disulphide reacts with $Fe(CO)_5$ to give the dicarbonyl derivative (117); in this paper¹³¹, structural data for some twelve other dithiocarbamates

are reviewed. The structure of Co(NO) (S_2 CNMe₂)₂ (118) has also been reported ¹³²; the Co-N-O angle is 135°. The nitrosyl group is disordered.

The tetrameric $[\text{Re}(\text{CO})_3(\text{SMe})]_4$ (119) belongs to the cubane class of molecules although the Re₄S₄ unit is considerably distorted, and long Re–Re distances (3.85–3.95 Å) confirm the absence of any formal metal–metal interaction ¹³³ [see AS70; p. 90].

Nitrosyl complexes

A pseudo-tetrahedral coordination about chromium is found in $Cr(NO)[N(SiMe_3)_2]_3$ (120)¹³⁴, contrasting with the square-planar geometry of the related complex $Cr[N(SiMe_3)_2]_2(THF)_2$. The Cr-N-O system is finear.

Full details of the structures of $[RuCl(NO)_2(PPh_3)_2]PF_6$ (121)¹³⁵ and of RuH(NO) (PPh₃)₃ (122)¹³⁶ are now available, together with a discussion of the bonding of the NO groups in complexes of this type. The former complex contains both bent and

linear Ru–N–O systems, whereas in (122), the angle Ru–N–O is $176(1)^{\circ}$. In the osmium derivative $[O_{S}(NO) (CO)_{2}(PPh_{3})_{2}]CIO_{4} (123)$, the Os–N–O system is linear (it is bent in the related cations $[IrCl(CO) (NO) (PPh_{3})_{2}]^{+}$ and $[O_{S}(OH) (NO)_{2} (PPh_{3})_{2}]^{+}$), and the structure is similar to that of $O_{S}(CO)_{3}(PPh_{3})_{2}$ and $[Mn(NO) (CO)_{2} (PPh_{3})_{2}]^{+37}$. In contrast with most linear M–N–O systems, which are usually associated with shorter M–NO bonds, the Os–NO bond is rather long [1.89(1) A]. It is evident that generalisations concerning the preferred geometry of the M–N–O system in any given situation seem to have little predictive power at present.

FERROCENE AND BENCHROTRENE DERIVATIVES

168

The absolute configurations of a large number of optically active ferrocenes have been established ¹³⁸ via the structure determination of compound (124a), obtained by the following route:

The conformations about the two asymmetric carbons are determined by hydrogen bond formation between the OH and NMe_2 groups, a factor which also contributes to the increased stability of (124a) over (124b).

The orientation of the C_5 rings in 1-acetyl-1'-benzoylferrocene (125) is midway between fully eclipsed and staggered¹³⁹. The two acyl groups are removed as far as possible from one another, with the phenyl ring rotated out of the C_5 ring plane. In 2,2-dicyanovinylferrocene (126), close intermolecular approaches are found [e.g. $C \cdots C$, 3.28 Å], but it is not clear whether these represent "self-complexing" of the type found in the ferrocenetetracyanoethylene adduct, or merely repulsive contacts allowing more efficient packing. The C_5 rings are rotated by 7° from the eclipsed conformation ¹⁴⁰.

The structures of the two racemic diastereoisomers of methyl-2-(1'-hydroxy-1'-phenylpropyl)benchrotrene (127) have been determined¹⁴¹, and consequently also their absolute configurations. The endo hydroxy group is compatible with the $Cr \cdot \cdot H - O$ hydrogen bond suggested by the IR spectrum.

REFERENCES

- 1 M.G.B. Drew and A.P. Wolters, J. Chem. Soc. Chem. Commun., (1972) 457.
- 2 V.G. Albano, G. Ciani, M. Manassero and M. Sansoni, J. Organometal. Chem., 34 (1972) 353.
- 3 G.J. Gainsford, R.R. Shrieke and J.D. Smith, J. Chem. Soc. Chem. Commun., (1972) 650.
- 4 N.I. Gapotchenko, N.V. Alekseev, N.E. Kolobova, K.N. Anisimov, I.A. Ronova and A.A. Johansson, J. Organometal. Chem., 35 (1972) 319.
- 5 B.A. Frenz and J.A. Ibers, Inorg. Chem., 11 (1972) 1109.
- 6 G. Ciani, M. Manassero and M. Sansoni, J. Inorg. Nuclear Chem., 34 (1972) 1760.
- 7 N.I. Gapotchenko, Y.T. Struchkov, N.V. Alekseev and I.A. Ronova, Zh. Strukt. Khim., 12 (1971) 571.
- 8 V.G. Andrianov, V.P. Martynov and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 866.
- 9 M. Elder and W.L. Hutcheon, J. Chem. Soc. Dalton, (1972) 175.
- 10 M.D. Brice and B.R. Penfold, Inorg. Chem., 11 (1972) 1381.
- 11 F.W.B. Einstein and R.D.G. Jones, Inorg. Chem., 11 (1972) 395.
- 12 D.B.W. Yawney and R.J. Doedens, Inorg. Chem., 11 (1972) 838.
- 13 J.R. Norton, J.P. Collman, G. Dolcetti and W.T. Robinson, Inorg. Chem., 11 (1972) 382.
- 14 C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland and R. Mason, J. Chem. Soc. Chem. Commun., (1972) 87.
- 15 G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, C.W. Bradford and R.S. Nyholm, J. Organometal. Chet. ., 40 (1972) C70.
- 16 M. Evans, M. Hursthouse, E.W. Randall, E. Rosenberg, L. Milone and M. Valle, J. Chem. Soc. Chem. Commun., (1972) 545.
- 17 G. Ferraris and G. Gervasio, J. Chem. Soc. Dalton, (1972) 1057.
- 18 T. O'Connor, A.J. Carty, M. Mathew and G. Palenik, J. Organometal. Chem., 38 (1972) C15.
- 19 M.A. Neumann, Trinh-Toan and L.F. Dahl, J. Amer. Chem. Soc., 94 (1972) 3383.
- 20 Trinh-Toan, W.P. Fehlhammer and L.F. Dahl, J. Amer. Chem. Soc., 94 (1972) 3389.

- 21 V.G. Andrianov and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 336.
- 22 R. Mason, J. Zubieta, A.T.T. Hsieh, J. Knight and M.J. Mays, J. Chem. Soc. Chem. Commun., (1972) 200.
- 23 V.G. Albano, G. Ciani, M.I. Bruce, G. Shaw and F.G.A. Stone, J. Organometal. Chem., 42 (1972) C99.
- 24 K. Schmiedeknecht, E. Müller, J. Krausse, W. Reichardt and B. Elsner, Proc. 3rd Coord. Conf., Bratislava 1971, p. 301.
- 25 F.A. Cotton and G.A. Rusholme, J. Amer. Chem. Soc., 94 (1972) 402.
- 26 A. Mawby and G.E. Pringle, J. Inorg. Nuclear Chem., 34 (1972) 877.
- 27 S.Z. Goldberg, E.N. Duesler and K.N. Raymond, Inorg. Chem., 11 (1972) 1397.
- 28 U.A. Gregory, S.D. Ibekwe, B.T. Kilbourn and D.R. Russell, J. Chem. Soc. A, (1971) 1118.
- 29 M. Calligaris, G. Nardin and L. Randaccio, Inorg. Nuclear Chem. Letters, 8 (1972) 477.
- 30 M.R. Churchill and M.V. Veidis, J. Chem. Soc. Dalton, (1972) 670.
- 31 M.R. Collier, C. Eaborn, B. Jovanovic, M.F. Lappert, Lj. Manojlovic-Muir, K.W. Muir and M.M. Truelock, J. Chem. Soc. Chem. Commun., (1972) 613.
- 32 M.R. Snow, J. McDonald, F. Basolo and J.A. Ibers, J. Amer. Chem. Soc., 94 (1972) 2526.
- 33 J.M. Guss, R. Mason, I. Søtofte, G. van Koten and J.G. Noltes, J. Chem. Soc. Chem. Commun., (1972) 446.
- 34 J.M. Guss, R. Mason, K.M. Thomas, G. van Koten and J.G. Noltes, J. Organometal. Chem., 40 (1972) C79.
- 35 W.P. Fchlhammer and L.F. Dahl, J. Amer. Chem. Soc., 94 (1972) 3371.
- 36 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 667.
- 37 F.W.B. Einstein, A.B. Gilchrist, G.W. Rayner-Canham and D. Sutton, J. Amer. Chem. Soc., 94 (1972) 645.
- 38 G. Bombieri, E. Forsellini and R. Graziani, J. Chem. Soc. Dalton, (1972) 525.
- 39 E. Benedetti, A. DeRenzi, A. Panunzi and C. Pedone, J. Organometal. Chem., 39 (1972) 403.
- 40 L.J. Guggenberger and R. Cramer, J. Amer. Chem. Soc., 94 (1972) 3779.
- 41 F. Maspero, E. Perrotti and F. Simonetti, J. Organometal. Chem., 38 (1972) C43.
- 42 C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 34 (1972) 387.
- 43 P.T. Cheng, C.D. Cook, C.H. Koo, S.C. Nyburg and M.T. Shiomi, Acta Cryst., B27 (1971) 1904.
- 44 W. Dreissig and H. Dietrich, Acta Cryst., B24 (1968) 108.
- 45 P.-T. Cheng and S.C. Nyburg, Can. J. Chem., 50 (1972) 912.
- 46 M. Colapietro and L. Zambonelli, Acta Cryst., B27 (1971) 734.
- 47 P.F. Rodesiler, E.A. Hall Griffith and E.L. Amma, J. Amer. Chem. Soc., 94 (1972) 761.
- 48 P.F. Rodesiler and E.L. Amma, Inorg. Chem., 11 (1972) 388.
- 49 R.M. Laine, R.E. Moriarty and R. Bau, J. Amer. Chem. Soc., 94 (1972) 1402.
- 50 N.W. Terry, E.L. Amma and L.Vaska, J. Amer. Chem. Soc., 94 (1972) 653.
- 51 W.D. Bonds and J.A. Ibers, J. Amer. Chem. Soc., 94 (1972) 3413.
- 52 R.S. Dickson and J.A. Ibers, J. Organometal. Chem., 36 (1972) 191.
- 53 R.S. Dickson and J.A. Ibers, J. Amer. Chem. Soc., 94 (1972) 2988.
- 54 J. Clemens, M. Green, M.-C. Kuo, C.J. Fritchie, J.T. Mague and F.G.A. Stone, J. Chem. Soc. Chem. Commun., (1972) 53.
- 55 W. Wong, S.J. Singer, W.D. Pitts, S.F. Watkins and W.H. Baddley, J. Chem. Soc. Chem. Commun., (1972) 672.
- 56 R.H. Fenn and A.J. Graham, J. Organometal. Chem., 37 (1972) 137.
- 57 A. Colombo and G. Allegra, Acta Cryst., B27 (1971) 1653.
- 58 J.E. Lydon and M.R. Truter, J. Chem. Soc. A, (1968) 362.
- 59 A.E. Smith, Inorg. Chem., 11 (1972) 165.
- 60 B.L. Barnett, C. Krüger and Y.-H. Tsay, Angew. Chem., 84 (1972) 120; Angew. Chem. Int. Edit., 11 (1972) 137.
- 61 Y. Kobayashi, Y. Iitaka and H. Yamazaki, Acta Cryst., B28 (1972) 899.
- 62 A. Musco, R. Rampone, P. Ganis and C. Pedone, J. Organometal. Chem., 34 (1972) C48.
- 63 G. Raper and W.S. McDonald, J. Chem. Soc. Dalton, (1972) 265.
- 64 M.G.B. Drew, S.M. Nelson and M. Sloan, J. Organometal. Chem., 39 (1972) C9.
- 65 I.W. Bassi and R. Scordamaglia, J. Organometal. Chem., 37 (1972) 353.

170

IRGANOMETALLIC STRUCTURES – TRANSITION METALS

- 66 K.B. Birnbaum, Acta Cryst., B28 (1972) 161.
- 67 G.I. Birnbaum, J. Amer. Chem. Soc., 94 (1972) 2455.
- 68 A.H.-J. Wang, I.C. Paul and G.N. Schrauzer, J. Chem. Soc. Chem. Commun., (1972) 736.
- 69 E. Koerner von Gustorf, F.-W. Grevels, C. Krüger, G. Olbrich, F. Mark, D. Schulz and R. Wagner, Z. Naturforsch., B27 (1972) 392.
- 70 F.A. Cotton, J. Amer. Chem. Soc., 90 (1968) 6230.
- 71 N. Yasuda, Y. Kai, N. Yasuoka, N. Kasai and M. Kakudo, J. Chem. Soc. Chem. Commun., (1972) 157.
- 72 F.A. Cotton and M.D. LaPrade, J. Organometal. Chem., 39 (1972) 345.
- 73 M.I. Bruce, M. Cooke and M. Green, Angew. Chem., 80 (1968) 662; Angew. Chem. Int. Edit., 7 (1968) 639.
- 74 B. Barnett, B. Büssemeier, P. Heimbach, P.W. Jolly, C. Krüger, I. Tkatchenko and G. Wilke, Tetrahedron Letters, (1972) 1457.
- 75 J.A. Evans, R.D.W. Kemmitt, B.Y. Kimura and D.R. Russell, J. Chem. Soc. Chem. Commun., (1972) 509.
- 76 C. Calvo, T. Hosokawa, H. Reinheimer and P.M. Maitlis, J. Amer. Chem. Soc., 94 (1972) 3237.
- 77 K.D. Smith and J.L. Atwood, J. Chem. Soc. Chem. Commun., (1972) 593.
- 78 V.I. Kulishov, E.M. Brainina, N.G. Bokiy and Y.T. Struchkov, J. Organometal. Chem., 36 (1972) 333.
- 79 A. Mawby and G.E. Pringle, J. Inorg. Nuclear Chem., 34 (1972) 525.
- 80 W. Harrison and J. Trotter, J. Chem. Soc. Dalton, (1972) 678.
- 81 A.I. Gusev and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 1044.
- 82 D.N. Hendrickson, Y.S. Sohn, W.H. Morrison and H.B. Gray, Inorg. Chem., 11 (1972) 808.
- 83 G.M. Brown, F.L. Hedberg and H. Rosenberg, J. Chem. Soc. Chem. Commun., (1972) 5.
- 84 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 120.
- 85 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 12 (1971) 1037.
- 86 K.O. Hodgson and K.N. Raymond, Inorg. Chem., 11 (1972) 171.
- 87 A. Avdeef, K.N. Raymond, K.O. Hodgron and A. Zalkin, Inorg. Chem., 11 (1972) 1083.
- 88 G. Huttner and B. Krieg, Angew. Chem., 84 (1972) 29; Angew. Chem., Int. Edit., 11 (1972) 42.
- 89 G. Huttner and O.S. Mills, Chem. Ber., 105 (1972) 301.
- 90 H. Vahrenkamp and H. Nöth, Chem. Ber., 105 (1972) 1148.
- 91 D. St Clair, A. Zalkin and D.H. Templeton, Inorg. Chem., 11 (1972) 377.
- 92 D.F. Lewis and S.J. Lippard, Inorg. Chem., 11 (1972) 621.
- 93 B. Jovanovic and Lj. Manojlovic-Muir, J. Chem. Soc. Dalton, (1972) 1176.
- 94 B. Jovanovic, Lj. Manojlovic-Muir and K.W. Muir, J. Chem. Soc. Dalton, (1972) 1178.
- 95 N.A. Bailey, N.W. Walker and J.A.W. Williams, J. Organometal. Chem., 37 (1972) C49.
- 96 G. Huttner and B. Kreig, Chem. Ber., 105 (1972) 67.
- 97 R.J. Hoare and O.S. Mills, J. Chem. Soc. Dalton, (1972) 653.
- 98 G. Huttner and D. Regler, Chem. Ber., 105 (1972) 1230.
- 99 E. Hädlicke and W. Hoppe, Acta Cryst., B27 (1971) 760.
- 100 E.O. Fischer, E. Winkler, G. Huttner and D. Regler, Angew. Chem., 84 (1972) 214; Int. Edit., 11 (1972) 238.
- 101 C.K. Prout, T.S. Cameron and A.R. Gent, Acta Cryst., B28 (1972) 32.
- 102 R.G. Little and R.J. Doedens, Inorg. Chem., 11 (1972) 1392.
- 103 L.G. Kuz'mina, N.G. Bokii, Y.T. Struchkov, A.V. Arutyunyan, L.V. Rubin and M.I. Rybinskaya, Zh. Strukt. Khim., 12 (1971) 875.
- 104 L.G. Kuz'mina, Y.S. Varshavskii, N.G. Bokii, Y.T. Struchkov and T.G. Cherkasova, Zh. Strukt. Khim., 12 (1971) 653.
- 105 H.D. Hausen and K. Krogmann, Z. Anorg. Chem., 389 (1972) 247.
- 106 D. Cullen, E. Meyer, T.S. Srivastava and M. Tsutsui, J. Chem. Soc. Chem. Commun., (1972) 584.
- M. Tsutsui, D. Ostfeld and L.M. Hoffman, J. Amer. Chem. Soc., 93 (1971) 1820;
 M. Tsutsui, D. Ostfeld, J.M. Francis and L.M. Hoffman, J. Coordin. Chem., 1 (1971) 115.
- 108 J.L. Calderon, F.A. Cotton and A. Shaver, J. Organometal. Chem., 37 (1972) 127.
- 109 F.A. Cotton, J.L. Calderon, M. Jeremic and A. Shaver, J. Chem. Soc. Chem. Commun., (1972) 777.

110 C.A. Kosky, P. Ganis and G. Avitabile, Acta Cryst., B27 (1971) 1859, 2493.

- 111 G. Avitabile, P. Ganis and M. Nemiroff, Acta Cryst., B27 (1971) 725.
- 112 M.J. Bennett, F.A. Cotton and M.D. LaPrade, Acta Cryst., B27 (1971) 1899.
- 113 H.S. Preston, J.M. Stewart, H.J. Plastas and S.O. Grim, Inorg. Chem., 11 (1972) 161.
- 114 A. Mawby and G.E. Pringle, J. Inorg. Nuclear Chem., 34 (1972) 517.
- 115 M.G.B. Drew, J. Chem. Soc. Dalton, (1972) 626.
- 116 H. Vahrenkamp, Chem. Ber., 105 (1972) 1486.

172

- 117 F.W.B. Einstein and R.D.G. Jones, J. Chem. Soc. Dalton, (1972) 442.
- 118 L.J. Guggenberger, D.D. Titus, M.T. Flood, R.E. Marsh, A.A. Orio and H.B. Gray, J. Amer. Chem. Soc., 94 (1972) 1135.
- 119 V.G. Albano, P.L. Bellon and G. Ciani, J. Organometal. Chem., 38 (1972) 155.
- 120 D.L. Ward, C.N. Caughlan, G.E. Voecks and P.W. Jennings, Acta Cryst., B28 (1972) 1949.
- 121 C.B. Dammann, P. Singh and D.J. Hodgson, J. Chem. Soc. Chem. Commun., (1972) 586.
- 122 D.M. Bridges, D.W.H. Rankin, D.A. Clement and J.F. Nixon, Acta Cryst., B28 (1972) 1130.
- 123 C.G. Pierpont and R. Eisenberg, Inorg. Chem., 11 (1972) 828.
- 124 C. Krüger and Y.-H. Tsay, Acta Cryst., B28 (1972) 1941.
- 125 V.G. Albano, P.L. Bellon and M. Manassero, J. Organometal. Chem., 35 (1972) 423.
- 126 A. Kutoglu, Z. Anorg. Chem., 390 (1972) 195.
- 127 T.S. Cameron and C.K. Prout, Acta Cryst., B28 (1972) 453.
- 128 G.P. Khare and R. Eisenberg, Inorg. Chem., 11 (1972) 1385.
- 129 F.W. Einstein, E. Enwall, N. Flitcroft and J.M. Leach, J. Inorg. Nuclear Chem., 34 (1972) 885.
- 130 J.A. Evans, M.J. Hacker, R.D.W. Kemmitt, D.R. Russell and J. Stocks, J. Chem. Soc. Chem. Commun., (1972) 72.
- 130a J.P. Fackler, J. Amer. Chem. Soc., 94 (1972) 1009.
- 131 J.S. Ricci, C.A. Eggers and I. Bernal, Inorg. Chim. Acta, 6 (1972) 97.
- 132. J.H. Enemark and R.D. Feltham, J. Chem. Soc. Dalton, (1972) 718.
- 133 W. Harrison, W.C. Marsh and J. Trotter, J. Chem. Soc. Dalton, (1972) 1009.
- 134 D.C. Bradley, M.B. Hursthouse, C.W. Newing and A.J. Welch, J. Chem. Soc. Chem. Commun., (1972) 567.
- 135 C.G. Pierpont and R. Eisenberg, Inorg. Chem., 11 (1972) 1088.
- 136 C.G. Pierpont and R. Eisenberg, Inorg. Chem., 11 (1972) 1094.
- 137 G.R. Clark. K.R. Grundy, W.R. Roper, J.M. Waters and K.R. Whittle, J. Chem. Soc. Chem. Commun., (1972) 119.
- 138 L.F. Batelle, R. Bau, G.W. Gokel, R.T. Oyakawa and I. Ugi, Angew. Chem., 84 (1972) 164; Angew. Chem. Int. Edit., 11 (1972) 138.

139 G. Calvarin and D. Weigel, Acta Cryst., B27 (1971) 1253.

- 140 A.P. Krukonis, J. Silverman and N.F. Yannoni, Acta Cryst., B28 (1972) 987.
- 141 Y. Dusausoy, J. Besançon and J. Protas, C.R. Acad. Sci. Paris Sér. C, 274 (1972) 774.